Temporal range: Rhyacian - Present 2100–0Ma
File:Eukaryota diversity 2.jpg
Eukaryotes and some examples of their diversity – clockwise from top left: Red mason bee, Boletus edulis, Common chimpanzee, Isotricha intestinalis, Persian buttercup, and Volvox carteri
Scientific classification Red Pencil Icon
Domain: Eukaryota
(Chatton, 1925) Whittaker & Margulis, 1978
Supergroups[2] and kingdoms
Kingdom Plantae – Plants
Kingdom Animalia – Animals
Kingdom Fungi

Eukaryotic organisms that cannot be classified under the kingdoms Plantae, Animalia or Fungi are sometimes grouped in the kingdom Protista.

A eukaryote ( /juːˈkæri.t/ or /juːˈkæriət/) is any organism whose cells have a cell nucleus and other organelles enclosed within membranes. Eukaryotes belong to the domain Eukaryota or Eukarya, and can be unicellular or multicellular organisms. The defining feature that sets eukaryotic cells apart from prokaryotic cells (Bacteria and Archaea) is that they have membrane-bound organelles, especially the nucleus, which contains the genetic material enclosed by the nuclear membrane.[3][4][5] The presence of a nucleus gives eukaryotes their name, which comes from the Greek εὖ (eu, "well" or "true") and κάρυον (karyon, "nut" or "kernel").[6] Eukaryotic cells also contain other membrane-bound organelles such as mitochondria and the Golgi apparatus. In addition, plants and algae contain chloroplasts. Unlike unicellular archaea and bacteria, eukaryotes may also be multicellular and include organisms consisting of many kinds of tissue and cell types.

Eukaryotes can reproduce both asexually through mitosis and sexually through meiosis and gamete fusion. In mitosis, one cell divides to produce two genetically identical cells. In meiosis, DNA replication is followed by two rounds of cell division to produce four haploid daughter cells. These act as sex cells (gametes). Each gamete has just one set of chromosomes, each a unique mix of the corresponding pair of parental chromosomes resulting from genetic recombination during meiosis.

The domain Eukaryota appears to be monophyletic, and makes up one of the domains of life in the three-domain system. The two other domains, Bacteria and Archaea, are prokaryotes[7] and have none of the above features. Eukaryotes represent a tiny minority of all living things.[8] However, due to their generally much larger size, their collective worldwide biomass is estimated to be about equal to that of prokaryotes.[8] Eukaryotes evolved approximately 1.6–2.1 billion years ago, during the Proterozoic eon.


File:Konstantin Mereschkowski.jpg

In 1905 and 1910, the Russian biologist Konstantin Mereschkowski (1855–1921) argued three things about the origin of nucleated cells. Firstly, plastids were reduced cyanobacteria in a symbiosis with a non-photosynthetic (heterotrophic) host. Secondly, the host had earlier in evolution formed by symbiosis between an amoeba-like host and a bacteria-like ("micrococcal") cell that formed the nucleus. Thirdly, plants inherited photosynthesis from cyanobacteria.[9]

The concept of the eukaryote has been attributed to the French biologist Edouard Chatton (1883-1947). The terms prokaryote and eukaryote were more definitively reintroduced by the Canadian microbiologist Roger Stanier and the Dutch-American microbiologist C. B. van Niel in 1962. In his 1938 work Titres et Travaux Scientifiques, Chatton had proposed the two terms, calling the bacteria prokaryotes and organisms with nuclei in their cells eukaryotes. However he mentioned this in only one paragraph, and the idea was effectively ignored until Chatton's statement was rediscovered by Stanier and van Niel.[10]

In 1967, Lynn Margulis provided microbiological evidence for endosymbiosis as the origin of chloroplasts and mitochondria in eukaryotic cells in her paper, On the origin of mitosing cells.[11] In the 1970s, Carl Woese explored microbial phylogenetics, studying variations in 16S ribosomal RNA. This helped to uncover the origin of the eukaryotes and the symbiogenesis of two important eukaryote organelles, mitochondria and chloroplasts. In 1977, Woese and George Fox introduced a "third form of life", which they called the Archaebacteria; in 1990, Woese, Otto Kandler and Mark L. Wheeler renamed this the Archaea.[10]

In 1979, G. W. Gould and G. J. Dring suggested that the eukaryotic cell's nucleus came from the ability of Gram-positive bacteria to form endospores. In 1987 and later papers, Thomas Cavalier-Smith proposed instead that the membranes of the nucleus and endoplasmic reticulum first formed by infolding a prokaryote's plasma membrane. In the 1990s, several other biologists proposed endosymbiotic origins for the nucleus, effectively reviving Mereschkowsky's theory.[9]

Cell features

Eukaryotic cells are typically much larger than those of prokaryotes having a volume of around 10,000 times greater than the prokaryotic cell.[12] They have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton composed of microtubules, microfilaments, and intermediate filaments, which play an important role in defining the cell's organization and shape. Eukaryotic DNA is divided into several linear bundles called chromosomes, which are separated by a microtubular spindle during nuclear division.

Internal membrane

File:Endomembrane system diagram en (edit).svg

Eukaryote cells include a variety of membrane-bound structures, collectively referred to as the endomembrane system.[13] Simple compartments, called vesicles and vacuoles, can form by budding off other membranes. Many cells ingest food and other materials through a process of endocytosis, where the outer membrane invaginates and then pinches off to form a vesicle.[14] It is probable that most other membrane-bound organelles are ultimately derived from such vesicles. Alternatively some products produced by the cell can leave in a vesicle through exocytosis.

The nucleus is surrounded by a double membrane (commonly referred to as a nuclear membrane or nuclear envelope), with pores that allow material to move in and out.[15] Various tube- and sheet-like extensions of the nuclear membrane form the endoplasmic reticulum, which is involved in protein transport and maturation. It includes the rough endoplasmic reticulum where ribosomes are attached to synthesize proteins, which enter the interior space or lumen. Subsequently, they generally enter vesicles, which bud off from the smooth endoplasmic reticulum.[16] In most eukaryotes, these protein-carrying vesicles are released and further modified in stacks of flattened vesicles (cisternae), the Golgi apparatus.[17]

Vesicles may be specialized for various purposes. For instance, lysosomes contain digestive enzymes that break down most biomolecules in the cytoplasm.[18] Peroxisomes are used to break down peroxide, which is otherwise toxic. Many protozoans have contractile vacuoles, which collect and expel excess water, and extrusomes, which expel material used to deflect predators or capture prey. In higher plants, most of a cell's volume is taken up by a central vacuole, which mostly contains water and primarily maintains its osmotic pressure.

Mitochondria and plastids

File:Mitochondrion structure.svg
Mitochondria are organelles found in nearly all eukaryotes that provide energy to the cell by converting ingested sugars into ATP.[19] They have two surrounding membranes (each a phospholipid bi-layer), the inner of which is folded into invaginations called cristae, where aerobic respiration takes place. Mitochondria contain their own DNA. They are now generally held to have developed from endosymbiotic prokaryotes, probably proteobacteria. Protozoa and microbes that lack mitochondria, such as the amoebozoan Pelomyxa and metamonads such as Giardia and Trichomonas, have usually been found to contain mitochondrion-derived organelles, such as hydrogenosomes and mitosomes, and thus probably lost the mitochondria secondarily. They obtain energy by enzymatic action on nutrients absorbed from the environment. The metamonad Monocercomonoides has also acquired, by lateral gene transfer, a cytosolic sulphur mobilisation system which provides the clusters of iron and sulfur required for protein synthesis. The normal mitochondrial iron-sulphur cluster pathway has been lost secondarily.[20][21]

Plants and various groups of algae also have plastids. Plastids have their own DNA and are developed from endosymbionts, in this case cyanobacteria. They usually take the form of chloroplasts, which like cyanobacteria contain chlorophyll and produce organic compounds (such as glucose) through photosynthesis. Others are involved in storing food. Although plastids probably had a single origin, not all plastid-containing groups are closely related. Instead, some eukaryotes have obtained them from others through secondary endosymbiosis or ingestion.[22]

Endosymbiotic origins have also been proposed for the nucleus, and for eukaryotic flagella.[23]

Cytoskeletal structures

Main article: Cytoskeleton
File:Chlamydomonas TEM 09.jpg

Many eukaryotes have long slender motile cytoplasmic projections, called flagella, or similar structures called cilia. Flagella and cilia are sometimes referred to as undulipodia,[24] and are variously involved in movement, feeding, and sensation. They are composed mainly of tubulin. These are entirely distinct from prokaryotic flagellae. They are supported by a bundle of microtubules arising from a centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella also may have hairs, or mastigonemes, and scales connecting membranes and internal rods. Their interior is continuous with the cell's cytoplasm.

Microfilamental structures composed of actin and actin binding proteins, e.g., α-actinin, fimbrin, filamin are present in submembraneous cortical layers and bundles, as well. Motor proteins of microtubules, e.g., dynein or kinesin and actin, e.g., myosins provide dynamic character of the network.

Centrioles are often present even in cells and groups that do not have flagella, but conifers and flowering plants have neither. They generally occur in groups that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles produce the spindle during nuclear division.[25]

The significance of cytoskeletal structures is underlined in the determination of shape of the cells, as well as their being essential components of migratory responses like chemotaxis and chemokinesis. Some protists have various other microtubule-supported organelles. These include the radiolaria and heliozoa, which produce axopodia used in flotation or to capture prey, and the haptophytes, which have a peculiar flagellum-like organelle called the haptonema.

Cell wall

Main article: Cell wall

The cells of plants, fungi, and most chromalveolates have a cell wall, a layer outside the cell membrane, providing the cell with structural support, protection, and a filtering mechanism. The cell wall also prevents over-expansion when water enters the cell.[26]

The major polysaccharides making up the primary cell wall of land plants are cellulose, hemicellulose, and pectin. The cellulose microfibrils are linked via hemicellulosic tethers to form the cellulose-hemicellulose network, which is embedded in the pectin matrix. The most common hemicellulose in the primary cell wall is xyloglucan.[27]

Differences among eukaryotic cells

There are many different types of eukaryotic cells, though animals and plants are the most familiar eukaryotes, and thus provide an excellent starting point for understanding eukaryotic structure. Fungi and many protists have some substantial differences, however.

Animal cell

File:Animal cell structure en.svg
File:Plant cell structure-en.svg

All animals are eukaryotic. Animal cells are distinct from those of other eukaryotes, most notably plants, as they lack cell walls and chloroplasts and have smaller vacuoles. Due to the lack of a cell wall, animal cells can adopt a variety of shapes. A phagocytic cell can even engulf other structures.

Plant cell

Main article: Plant cell

Plant cells are quite different from the cells of the other eukaryotic organisms. Their distinctive features are:

Fungal cell


The cells of fungi are most similar to animal cells, with the following exceptions:[32]

  • A cell wall that contains chitin
  • Less definition between cells; the hyphae of higher fungi have porous partitions called septa, which allow the passage of cytoplasm, organelles, and, sometimes, nuclei. Primitive fungi have few or no septa, so each organism is essentially a giant multinucleate supercell; these fungi are described as coenocytic.
  • Only the most primitive fungi, chytrids, have flagella.

Other eukaryotic cells

Eukaryotes are a very diverse group, and their cell structures are equally diverse. Many have cell walls; many do not. Many have chloroplasts, derived from primary, secondary, or even tertiary endosymbiosis; and many do not. Some groups have unique structures, such as the cyanelles (unusual chloroplasts) of the glaucophytes,[33] the haptonema of the haptophytes, or the ejectosomes of the cryptomonads. Other structures, such as pseudopodia, are found in various eukaryote groups in different forms, such as the lobose amoebozoans or the reticulose foraminiferans.[34]



Cell division generally takes place asexually by mitosis, a process that allows each daughter nucleus to receive one copy of each chromosome. In most eukaryotes, there is also a process of sexual reproduction, typically involving an alternation between haploid generations, wherein only one copy of each chromosome is present, and diploid generations, wherein two copies of each chromosome are present, occurring through meiosis. There is considerable variation in this pattern.

Eukaryotes have a smaller surface area to volume ratio than prokaryotes, and thus have lower metabolic rates and longer generation times.[35] In some multicellular organisms, cells specialized for metabolism have enlarged surface areas, such as intestinal villi.

The evolution of sexual reproduction may be a primordial and fundamental characteristic of eukaryotes. Based on a phylogenetic analysis, Dacks and Roger proposed that facultative sex was present in the common ancestor of all eukaryotes.[36] A core set of genes that function in meiosis is present in both Trichomonas vaginalis and Giardia intestinalis, two organisms previously thought to be asexual.[37][38] Since these two species are descendants of lineages that diverged early from the eukaryotic evolutionary tree, it was inferred that core meiotic genes, and hence sex, were likely present in a common ancestor of all eukaryotes.[37][38] Eukaryotic species once thought to be asexual, such as parasitic protozoa of the genus Leishmania, have been shown to have a sexual cycle.[39] Also, evidence now indicates that amoebae, previously regarded as asexual, are anciently sexual and that the majority of present-day asexual groups likely arose recently and independently.[40]


File:Tree of Living Organisms 2.png
File:Eukaryota tree.svg
File:Eukaryote species pie tree.png

In antiquity, the two lineages of animals and plants were recognized. They were given the taxonomic rank of Kingdom by Linnaeus. Though he included the fungi with plants with some reservations, it was later realized that they are quite distinct and warrant a separate kingdom, the composition of which was not entirely clear until the 1980s.[41] The various single-cell eukaryotes were originally placed with plants or animals when they became known. In 1830, the German biologist Georg A. Goldfuss coined the word protozoa to refer to organisms such as ciliates, and this group was expanded until it encompassed all single-celled eukaryotes, and given their own kingdom, the Protista, by Ernst Haeckel in 1866.[42][43] The eukaryotes thus came to be composed of four kingdoms:

The protists were understood to be "primitive forms", and thus an evolutionary grade, united by their primitive unicellular nature.[43] The disentanglement of the deep splits in the tree of life only really started with DNA sequencing, leading to a system of domains rather than kingdoms as top level rank being put forward by Carl Woese, uniting all the eukaryote kingdoms under the eukaryote domain.[44] At the same time, work on the protist tree intensified, and is still actively going on today. Several alternative classifications have been forwarded, though there is no consensus in the field.

A classification produced in 2005 for the International Society of Protistologists,[45] which reflected the consensus of the time, divided the eukaryotes into six supposedly monophyletic 'supergroups'. However, in the same year (2005), doubts were expressed as to whether some of these supergroups were monophyletic, particularly the Chromalveolata,[46] and a review in 2006 noted the lack of evidence for several of the supposed six supergroups.[47] A revised classification in 2012[2] recognizes five supergroups.

Archaeplastida (or Primoplantae) Land plants, green algae, red algae, and glaucophytes
SAR supergroup Stramenopiles (brown algae, diatoms, etc.), Alveolata, and Rhizaria (Foraminifera, Radiolaria, and various other amoeboid protozoa).
Excavata Various flagellate protozoa
Amoebozoa Most lobose amoeboids and slime molds
Opisthokonta Animals, fungi, choanoflagellates, etc.

There are also smaller groups of eukaryotes whose position is uncertain or seems to fall outside the major groups[48] — in particular, Haptophyta, Cryptophyta, Centrohelida, Telonemia, Picozoa,[49] Apusomonadida, Ancyromonadida, Breviatea, and the genus Collodictyon.[50] Overall, it seems that, although progress has been made, there are still very significant uncertainties in the evolutionary history and classification of eukaryotes. As Roger & Simpson said in 2009 "with the current pace of change in our understanding of the eukaryote tree of life, we should proceed with caution."[51]

In an article published in Nature Microbiology in April 2016 the authors, "reinforced once again that the life we see around us – plants, animals, humans and other so-called eukaryotes – represent a tiny percentage of the world's biodiversity."[52] They classified eukaryote "based on the inheritance of their information systems as opposed to lipid or other cellular structures." Jillian F. Banfield of the University of California, Berkeley and fellow scientists used a super computer to generate a diagram of a new tree of life based on DNA from 3000 species including 2,072 known species and 1,011 newly reported microbial organisms, whose DNA they had gathered from diverse environments.[7][53] As the capacity to sequence DNA became easier, Banfield and team were able to do metagenomic sequencing—"sequencing whole communities of organisms at once and picking out the individual groups based on their genes alone."[52]


The rRNA trees constructed during the 1980s and 1990s left most eukaryotes in an unresolved "crown" group (not technically a true crown), which was usually divided by the form of the mitochondrial cristae; see crown eukaryotes. The few groups that lack mitochondria branched separately, and so the absence was believed to be primitive; but this is now considered an artifact of long-branch attraction, and they are known to have lost them secondarily.[54][55]

As of 2011, there is widespread agreement that the Rhizaria belong with the Stramenopiles and the Alveolata, in a clade dubbed the SAR supergroup, so that Rhizaria is not one of the main eukaryote groups; also that the Amoebozoa and Opisthokonta are each monophyletic and form a clade, often called the unikonts.[56][57][58][59][60] Beyond this, there does not appear to be a consensus.

It has been estimated that there may be 75 distinct lineages of eukaryotes.[61] Most of these lineages are protists.

The known eukaryote genome sizes vary from 8.2 megabases (Mb) in Babesia bovis to 112,000–220,050 Mb in the dinoflagellate Prorocentrum micans, showing that the genome of the ancestral eukaryote has undergone considerable variation during its evolution.[61] The last common ancestor of all eukaryotes is believed to have been a phagotrophic protist with a nucleus, at least one centriole and cilium, facultatively aerobic mitochondria, sex (meiosis and syngamy), a dormant cyst with a cell wall of chitin and/or cellulose and peroxisomes.[61] Later endosymbiosis led to the spread of plastids in some lineages.

Five supergroups

A global tree of eukaryotes from a consensus of phylogenetic evidence (in particular, phylogenomics), rare genomic signatures, and morphological characteristics is presented in Adl et al. 2012[2] and Burki 2014/2016 with the Cryptophyta and picozoa having emerged within the Archaeplastida.[48][62][63] A similar inclusion of Glaucophyta, Cryptista (and also Haptista) is recovered in Karnkowska et al.[64]


Red algae (Rhodophyta) 40 px


Glaucophyta 60 px

Green plants (Viridiplantae) 60 px


Haptista 60 px




Stramenopiles 40 px

Alveolata 80 px

Rhizaria Ammonia tepida

Discoba 55px


Amoebozoa 60 px

Apusomonadida 60 px


Holomycota (inc. fungi) 60 px

Holozoa (inc. animals) 45 px

In some analyses, the Hacrobia group (Haptophyta + Cryptophyta) is placed next to Archaeplastida,[56] but in other ones it is nested inside the Archaeplastida.[65] However, several recent studies have concluded that Haptophyta and Cryptophyta do not form a monophyletic group.[66] The former could be a sister group to the SAR group, the latter cluster with the Archaeplastida (plants in the broad sense).[67]

The division of the eukaryotes into two primary clades, bikonts (Archaeplastida + SAR + Excavata) and unikonts (Amoebozoa + Opisthokonta), derived from an ancestral biflagellar organism and an ancestral uniflagellar organism, respectively, had been suggested earlier.[65][68][69] A 2012 study produced a somewhat similar division, although noting that the terms "unikonts" and "bikonts" were not used in the original sense.[49]

A highly converged and congruent set of trees appears in Derelle et al (2015), Ren et al (2016), Yang et al (2017) and Cavalier-Smith (2015) including the supplementary information, resulting in a more conservative and consolidated tree. It is combined with some results from Cavalier-Smith for the basal Opimoda.[70][71][72][73][74][75][76] The main remaining controversies are the root, and the exact positioning of the Rhodophyta and the bikonts Rhizaria, Haptista, Cryptista, Picozoa and Telonemia, many of which may be eukaryote-eukaryote hybrids.[77] Archeaplastida developed the Chloroplasts probably by endosymbiosis of an ancestor related to a currently extant cyanobacterium, Gloeomargarita lithophora.[78][79][77]



















Diphyllatea, Rigifilida, Mantamonas







Cavalier-Smith's tree

Thomas Cavalier-Smith 2010,[80] 2013,[81] 2014[82] and 2017[83] places the eukaryotic tree's root between Excavata (with ventral feeding groove supported by a microtubular root) and the grooveless Euglenozoa, and monophyletic Chromista, correlated to a single endosymbyotic event of capturing a red-algae.












Chromista (+ Rhodophyte)

















Origin of eukaryotes

File:Eocyte hypothesis.png
File:Collapsed tree labels simplified.png


The origin of the eukaryotic cell is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The timing of this series of events is hard to determine; Knoll (2006) suggests they developed approximately 1.6–2.1 billion years ago. Some acritarchs are known from at least 1.65 billion years ago, and the possible alga Grypania has been found as far back as 2.1 billion years ago.[86] The Geosiphon-like fossil fungus Diskagma has been found in paleosols 2.2 billion years old.[87]

Organized living structures have been found in the black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, dated at 2.1 billion years old. Eukaryotic life could have evolved at that time.[88] Fossils that are clearly related to modern groups start appearing an estimated 1.2 billion years ago, in the form of a red alga, though recent work suggests the existence of fossilized filamentous algae in the Vindhya basin dating back perhaps to 1.6 to 1.7 billion years ago.[89]

Biomarkers suggest that at least stem eukaryotes arose even earlier. The presence of steranes in Australian shales indicates that eukaryotes were present in these rocks dated at 2.7 billion years old.[90][91]

Relationship to Archaea

The nuclear DNA and genetic machinery of eukaryotes is more similar to Archaea than Bacteria, leading to a controversial suggestion that eukaryotes should be grouped with Archaea in the clade Neomura. In other respects, such as membrane composition, eukaryotes are similar to Bacteria. Three main explanations for this have been proposed:

  • Eukaryotes resulted from the complete fusion of two or more cells, wherein the cytoplasm formed from a eubacterium, and the nucleus from an archaeon,[92] from a virus,[93][94] or from a pre-cell.[95][96]
  • Eukaryotes developed from Archaea, and acquired their eubacterial characteristics through the endosymbiosis of a proto-mitochondrion of eubacterial origin.[97]
  • Eukaryotes and Archaea developed separately from a modified eubacterium.
File:Primordial biogenesis.svg

Alternative proposals include:

  • The chronocyte hypothesis postulates that a primitive eukaryotic cell was formed by the endosymbiosis of both archaea and bacteria by a third type of cell, termed a chronocyte.[99]
  • The universal common ancestor (UCA) of the current tree of life was a complex organism that survived a mass extinction event rather than an early stage in the evolution of life. Eukaryotes and in particular akaryotes (Bacteria and Archaea) evolved through reductive loss,[100] so that similarities result from differential retention of original features.

Assuming no other group is involved, there are three possible phylogenies for the Bacteria, Archaea and Eukaryota in which each is monophyletic. These are labelled 1 to 3 in the table below. The eocyte hypothesis is a modification of hypothesis 2 in which the Archaea are paraphyletic. (The table and the names for the hypotheses are based on Harish and Kurland, 2017.[101])

Alternative hypotheses for the base of the tree of life
1 – Two empires 2 – Three domains 3 – Gupta 4 – Eocyte

















In recent years, most researchers have favoured either the three domains (3D) or the eocyte hypotheses. An rRNA analyses supports the eocyte scenario, apparently with the Eukaryote root in Excavata.[102][80][81][82][83] A cladogram supporting the eocyte hypothesis, positioning eukaryotes within Archaea, based on phylogenomic analyses of the Asgard archaea, is:[103][104]















In this scenario, the Asgard group is seen as a sister taxon of the TACK group, which comprises Crenarchaeota (formerly named eocytes), Thaumarchaeota, and others.

In 2017, there has been significant pushback against this scenario, arguing that the eukaryotes did not emerge within the Archaea. Cunha et al. produced analyses supporting the three domains (3D) or Woese hypothesis (2 in the table above) and rejecting the eocyte hypothesis (4 above).[105] Harish and Kurland found strong support for the earlier two empires (2D) or Mayr hypothesis (1 in the table above), based on analyses of the coding sequences of protein domains. They rejected the eocyte hypothesis as the least likely.[106][101] A possible interpretation of their analysis is that the universal common ancestor (UCA) of the current tree of life was a complex organism that survived an evolutionary bottleneck, rather than a simpler organism arising early in the history of life.[100]

Endomembrane system and mitochondria

The origins of the endomembrane system and mitochondria are also unclear.[107] The phagotrophic hypothesis proposes that eukaryotic-type membranes lacking a cell wall originated first, with the development of endocytosis, whereas mitochondria were acquired by ingestion as endosymbionts.[108] The syntrophic hypothesis proposes that the proto-eukaryote relied on the proto-mitochondrion for food, and so ultimately grew to surround it. Here the membranes originated after the engulfment of the mitochondrion, in part thanks to mitochondrial genes (the hydrogen hypothesis is one particular version).[109]

In a study using genomes to construct supertrees, Pisani et al. (2007) suggest that, along with evidence that there was never a mitochondrion-less eukaryote, eukaryotes evolved from a syntrophy between an archaea closely related to Thermoplasmatales and an α-proteobacterium, likely a symbiosis driven by sulfur or hydrogen. The mitochondrion and its genome is a remnant of the α-proteobacterial endosymbiont.[110]


Different hypotheses have been proposed as to how eukaryotic cells came into existence. These hypotheses can be classified into two distinct classes – autogenous models and chimeric models.

Autogenous models

Template:Plain image with caption

Autogenous models propose that a proto-eukaryotic cell containing a nucleus existed first, and later acquired mitochondria.[111] According to this model, a large prokaryote developed invaginations in its plasma membrane in order to obtain enough surface area to service its cytoplasmic volume. As the invaginations differentiated in function, some became separate compartments—giving rise to the endomembrane system, including the endoplasmic reticulum, golgi apparatus, nuclear membrane, and single membrane structures such as lysosomes.[112] Mitochondria are proposed to come from the endosymbiosis of an aerobic proteobacterium, and it is assumed that all the eukaryotic lineages that did not acquire mitochondria became extinct.[113] Chloroplasts came about from another endosymbiotic event involving cyanobacteria. Since all eukaryotes have mitochondria, but not all have chloroplasts, the serial endosymbiosis theory proposes that mitochondria came first.

Chimeric models

Chimeric models claim that two prokaryotic cells existed initially – an archaeon and a bacterium. These cells underwent a merging process, either by a physical fusion or by endosymbiosis, thereby leading to the formation of a eukaryotic cell. Within these chimeric models, some studies further claim that mitochondria originated from a bacterial ancestor while others emphasize the role of endosymbiotic processes behind the origin of mitochondria.

Based on the process of mutualistic symbiosis, the hypotheses can be categorized as – the serial endosymbiotic theory (SET),[114][115][116] the hydrogen hypothesis (mostly a process of symbiosis where hydrogen transfer takes place among different species),[117] and the syntrophy hypothesis.[118][119]

According to serial endosymbiotic theory (championed by Lynn Margulis), a union between a motile anaerobic bacterium (like Spirochaeta) and a thermoacidophilic crenarchaeon (like Thermoplasma which is sulfidogenic in nature) gave rise to the present day eukaryotes. This union established a motile organism capable of living in the already existing acidic and sulfurous waters. Oxygen is known to cause toxicity to organisms that lack the required metabolic machinery. Thus, the archaeon provided the bacterium with a highly beneficial reduced environment (sulfur and sulfate were reduced to sulfide). In microaerophilic conditions, oxygen was reduced to water thereby creating a mutual benefit platform. The bacterium on the other hand, contributed the necessary fermentation products and electron acceptors along with its motility feature to the archaeon thereby gaining a swimming motility for the organism. From a consortium of bacterial and archaeal DNA originated the nuclear genome of eukaryotic cells. Spirochetes gave rise to the motile features of eukaryotic cells. Endosymbiotic unifications of the ancestors of alpha-proteobacteria and cyanobacteria, led to the origin of mitochondria and plastids respectively. For example, Thiodendron has been known to have originated via an ectosymbiotic process based on a similar syntrophy of sulfur existing between the two types of bacteria – Desulphobacter and Spirochaeta. However, such an association based on motile symbiosis have never been observed practically. Also there is no evidence of archaeans and spirochetes adapting to intense acid-based environments.[120]

In the hydrogen hypothesis, the symbiotic linkage of an anaerobic and autotrophic methanogenic archaeon (host) with an alpha-proteobacterium (the symbiont) gave rise to the eukaryotes. The host utilized hydrogen (H2) and carbon dioxide (Template:CO2) to produce methane while the symbiont, capable of aerobic respiration, expelled H2 and Template:CO2 as byproducts of anaerobic fermentation process. The host's methanogenic environment worked as a sink for H2, which resulted in heightened bacterial fermentation. Endosymbiotic gene transfer (EGT) acted as a catalyst for the host to acquire the symbionts' carbohydrate metabolism and turn heterotrophic in nature. Subsequently, the host's methane forming capability was lost. Thus, the origins of the heterotrophic organelle (symbiont) are identical to the origins of the eukaryotic lineage. In this hypothesis, the presence of H2 represents the selective force that forged eukaryotes out of prokaryotes.[citation needed]

The syntrophy hypothesis was developed in contrast to the hydrogen hypothesis and proposes the existence of two symbiotic events. According to this theory, the origin of eukaryotic cells was based on metabolic symbiosis (syntrophy) between a methanogenic archaeon and a delta-proteobacterium. This syntrophic symbiosis was initially facilitated by H2 transfer between different species under anaerobic environments. In earlier stages, an alpha-proteobacterium became a member of this integration, and later developed into the mitochondrion. Gene transfer from a delta-proteobacterium to an archaeon led to the methanogenic archaeon developing into a nucleus. The archaeon constituted the genetic apparatus, while the delta-proteobacterium contributed towards the cytoplasmic features. This theory incorporates two selective forces at the time of nucleus evolution – (a) presence of metabolic partitioning to avoid the harmful effects of the co-existence of anabolic and catabolic cellular pathways, and (b) prevention of abnormal protein biosynthesis due to a vast spread of introns in the archaeal genes after acquiring the mitochondrion and losing methanogenesis.[citation needed]

See also

Template:Wikipedia books


  1. ^ Sakaguchi M, Takishita K, Matsumoto T, Hashimoto T, Inagaki Y (July 2009). "Tracing back EFL gene evolution in the cryptomonads-haptophytes assemblage: separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads". Gene. 441 (1–2): 126–31. PMID 18585873. doi:10.1016/j.gene.2008.05.010. 
  2. ^ a b c Adl, Sina M.; et al. (September 2012). "The revised classification of eukaryotes" (PDF). Journal of Eukaryotic Microbiology. 59 (5): 429–514. PMC 3483872Freely accessible. PMID 23020233. doi:10.1111/j.1550-7408.2012.00644.x. Archived from the original (PDF) on 16 June 2016. 
  3. ^ Youngson, Robert M. (2006). Collins Dictionary of Human Biology. Glasgow: HarperCollins. ISBN 0-00-722134-7. 
  4. ^ Nelson, David L.; Cox, Michael M. (2005). Lehninger Principles of Biochemistry (4th ed.). New York: W.H. Freeman. ISBN 0-7167-4339-6. 
  5. ^ Martin, E.A., ed. (1983). Macmillan Dictionary of Life Sciences (2nd ed.). London: Macmillan Press. ISBN 0-333-34867-2. 
  6. ^ "eukaryotic". Online Etymology Dictionary. 
  7. ^ a b Zimmer, Carl (11 April 2016). "Scientists Unveil New 'Tree of Life'". The New York Times. Retrieved 2016-04-11. 
  8. ^ a b Whitman W; Coleman D; Wiebe W (1998). "Prokaryotes: The unseen majority" (PDF). Proc. Natl. Acad. Sci. USA. 95 (12): 6578–6583. Bibcode:1998PNAS...95.6578W. PMC 33863Freely accessible. PMID 9618454. doi:10.1073/pnas.95.12.6578. 
  9. ^ a b Martin, William F.; Garg, Sriram; Zimorski, Verena (26 September 2015). "Endosymbiotic theories for eukaryote origin". Philos Trans Royal Soc B. 370 (1678): 20140330. PMC 4571569Freely accessible. PMID 26323761. doi:10.1098/rstb.2014.0330. 
  10. ^ a b Sapp, Jan (June 2005). "The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology". Microbiology and Molecular Biology Reviews. 69 (2): 292–305. PMC 1197417Freely accessible. PMID 15944457. doi:10.1128/MMBR.69.2.292-305.2005. 
  11. ^ Lynn Sagan (1967). "On the origin of mitosing cells". J Theor Biol. 14 (3): 255–274. PMID 11541392. doi:10.1016/0022-5193(67)90079-3. 
  12. ^ "Microorganisms and the origin of the eukaryotic cell" (PDF). Retrieved 2017-10-24. 
  13. ^ Linka, Marc; Weber, Andreas P.M. (2011). "Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells". In Burnap, Robert L. & Vermaas, Willem F.J. Functional Genomics and Evolution of Photosynthetic Systems. Springer. p. 215. ISBN 978-9400715332. 
  14. ^ Marsh, Mark (2001). Endocytosis. Oxford University Press. p. vii. ISBN 978-0-19-963851-2. 
  15. ^ Hetzer, Mertin (February 3, 2010). "The Nuclear Envelope". Cold Spring Harbor Perspectives in Biology. 2 (3): a000539. PMC 2829960Freely accessible. PMID 20300205. doi:10.1101/cshperspect.a000539. 
  16. ^ "Endoplasmic Reticulum (Rough and Smooth)". British Society for Cell Biology. Retrieved 12 November 2017. 
  17. ^ "Golgi Apparatus". British Society for Cell Biology. Retrieved 12 November 2017. 
  18. ^ "Lysosome". British Society for Cell Biology. Retrieved 12 November 2017. 
  19. ^ "Re: Are there eukaryotic cells without mitochondria?". 1 May 2006. 
  20. ^ Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C.; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D.; Herman, Emily K.; Soukal, Petr; Hroudová, Miluše; Doležal, Pavel; Stairs, Courtney W.; Roger, Andrew J.; Eliáš, Marek; Dacks, Joel B.; Vlček, Čestmír; Hampl, Vladimír (2016). "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26: 1274–1284. doi:10.1016/j.cub.2016.03.053. 
  21. ^ Davis, Josh L. (13 May 2016). "Scientists Shocked To Discover Eukaryote With NO Mitochondria". IFL Science. Retrieved 2016-05-13. 
  22. ^ Sato, N. (2006). "Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids". In R.R. Wise; J.K. Hoober. The Structure and Function of Plastids. 23. Springer Netherlands. pp. 75–102. ISBN 978-1-4020-4060-3. doi:10.1007/978-1-4020-4061-0_4. 
  23. ^ Margulis, L. (1998). Symbiotic planet: a new look at evolution. New York: Basic Books. ISBN 978-0-465-07271-2. OCLC 39700477. Template:Page needed
  24. ^ Lynn Margulis, Heather I. McKhann & Lorraine Olendzenski (ed.), Illustrated Glossary of Protoctista, Jones and Bartlett Publishers, Boston, 1993, p.xviii. Template:Catalog lookup linkScript error
  25. ^ Vorobjev, I. A.; Nadezhdina, E. S. (1987). "The Centrosome and Its Role in the Organization of Microtubules". International Review of Cytology. International Review of Cytology. 106: 227–293. ISBN 978-0-12-364506-7. PMID 3294718. doi:10.1016/S0074-7696(08)61714-3. 
  26. ^ Howland, John L. (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. pp. 69–71. ISBN 0-19-511183-4. 
  27. ^ Fry, Stephen C. (1989). "The Structure and Functions of Xyloglucan". Journal of Experimental Botany. 40 (1): 1–11. doi:10.1093/jxb/40.1.1. 
  28. ^ Raven, J. A. (July 1987). "The role of vacuoles". New Phytologist. 106: 357–422. doi:10.1111/j.1469-8137.1987.tb00149.x. 
  29. ^ Oparka, K. (2005). Plasmodesmata. Oxford, UK: Blackwell Publishing. 
  30. ^ Raven, P.H.; Evert, R.F.; Eichorm, S.E. (1999). Biology of Plants. New York: W.H. Freeman. 
  31. ^ Silflow, C.D.; Lefebvre, P.A. (December 2001). "Assembly and Motility of Eukaryotic Cilia and Flagella. Lessons from Chlamydomonas reinhardtii". Plant Physiology. 127: 1500–1507. PMC 1540183Freely accessible. PMID 11743094. doi:10.1104/pp.010807. 
  32. ^ Deacon J (2005). Fungal Biology. Cambridge, Massachusetts: Blackwell Publishers. p. 4 and passim. ISBN 1-4051-3066-0. 
  33. ^ Patrick J. Keeling (2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–1493. PMID 21652304. doi:10.3732/ajb.91.10.1481. 
  34. ^ David J. Patterson. "Amoebae: Protists Which Move and Feed Using Pseudopodia". Tree of Life Web Project. Retrieved 12 November 2017. 
  35. ^ Lane, Nick (2011). "Energetics and genetics across the prokaryote-eukaryote divide". Biology Direct. 6 (1): 35. doi:10.1186/1745-6150-6-35. 
  36. ^ Dacks J, Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". J. Mol. Evol. 48 (6): 779–83. PMID 10229582. doi:10.1007/PL00013156. 
  37. ^ a b Ramesh MA, Malik SB, Logsdon JM (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Curr. Biol. 15 (2): 185–91. PMID 15668177. doi:10.1016/j.cub.2005.01.003. 
  38. ^ a b Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM (2008). Hahn MW, ed. "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLoS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. PMC 2488364Freely accessible. PMID 18663385. doi:10.1371/journal.pone.0002879. 
  39. ^ Akopyants NS, Kimblin N, Secundino N, et al. (April 2009). "Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector". Science. 324 (5924): 265–8. Bibcode:2009Sci...324..265A. PMC 2729066Freely accessible. PMID 19359589. doi:10.1126/science.1169464. 
  40. ^ Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proc. Biol. Sci. 278 (1715): 2081–90. PMC 3107637Freely accessible. PMID 21429931. doi:10.1098/rspb.2011.0289. 
  41. ^ Moore RT. (1980). "Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts". Botanica Marina. 23: 361–73. 
  42. ^ Scamardella, J. M. (1999). "Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista" (PDF). International Microbiology. 2: 207–221. Archived from the original (PDF) on 14 June 2011. 
  43. ^ a b Rothschild LJ (1989). "Protozoa, Protista, Protoctista: what's in a name?" (PDF). J Hist Biol. 22 (2): 277–305. PMID 11542176. doi:10.1007/BF00139515. 
  44. ^ Woese C, Kandler O, Wheelis M (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc Natl Acad Sci USA. 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. PMC 54159Freely accessible. PMID 2112744. doi:10.1073/pnas.87.12.4576. Retrieved 2010-02-11. 
  45. ^ Adl SM; Simpson AG; Farmer MA; et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". J. Eukaryot. Microbiol. 52 (5): 399–451. PMID 16248873. doi:10.1111/j.1550-7408.2005.00053.x. 
  46. ^ Harper, J. T.; Waanders, E.; Keeling, P. J. (2005). "On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes" (PDF). Int. J. System. Evol. Microbiol. 55 (1): 487–496. PMID 15653923. doi:10.1099/ijs.0.63216-0. Archived from the original (PDF) on 17 December 2008. 
  47. ^ Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA (December 2006). "Evaluating Support for the Current Classification of Eukaryotic Diversity". PLoS Genet. 2 (12): e220. PMC 1713255Freely accessible. PMID 17194223. doi:10.1371/journal.pgen.0020220. 
  48. ^ a b Burki, F. (2014). "The eukaryotic tree of life from a global phylogenomic perspective". Cold Spring Harbor Perspectives in Biology. 6: 1–17. doi:10.1101/cshperspect.a016147. 
  49. ^ a b Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J.; Klaveness, Dag; Shalchian-Tabrizi, Kamran (2012). "Collodictyon—An Ancient Lineage in the Tree of Eukaryotes". Molecular Biology and Evolution. 29 (6): 1557–68. PMC 3351787Freely accessible. PMID 22319147. doi:10.1093/molbev/mss001. 
  50. ^ Romari; Vaulot (2004). "Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences". Limnol Oceanogr. 49: 784–98. doi:10.4319/lo.2004.49.3.0784. 
  51. ^ Roger AJ, Simpson AG (2009). "Evolution: Revisiting the Root of the Eukaryote Tree". Current Biology. 19 (4): R165–7. PMID 19243692. doi:10.1016/j.cub.2008.12.032. 
  52. ^ a b Sanders, Robert (11 April 2016). "Wealth of unsuspected new microbes expands tree of life". Berkeley News. Retrieved 2016-04-11. 
  53. ^ Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki; Ise, Kotaro; Suzuki, Yohey; Dudek, Natasha; Relman, David A.; Finstad, Kari M.; Amundson, Ronald; Thomas, Brian C.; Banfield, Jillian F. (11 April 2016). "A new view of the tree of life". Nature Microbiology. 1: 16048. PMID 27572647. doi:10.1038/nmicrobiol.2016.48. 
  54. ^ Tovar J, Fischer A, Clark CG (1999). "The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica". Mol. Microbiol. 32 (5): 1013–21. PMID 10361303. doi:10.1046/j.1365-2958.1999.01414.x. 
  55. ^ Boxma B; de Graaf RM; van der Staay GW; Huynen, Theo A.; Hackstein, Guenola; Gabaldón, Toni; Van Hoek, Angela H. A. M.; Moon-Van Der Staay, Seung Yeo; Koopman, Werner J. H.; van Hellemond, Jaap J.; Tielens, Aloysius G. M.; Friedrich, T; Veenhuis, M (2005). "An anaerobic mitochondrion that produces hydrogen". Nature. 434 (7029): 74–9. Bibcode:2005Natur.434...74B. PMID 15744302. doi:10.1038/nature03343. 
  56. ^ a b Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007). Butler G, ed. "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLoS ONE. 2 (8): e790. Bibcode:2007PLoSO...2..790B. PMC 1949142Freely accessible. PMID 17726520. doi:10.1371/journal.pone.0000790. 
  57. ^ Burki, Fabien; Shalchian-Tabrizi, Kamran; Pawlowski, Jan (2008). "Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes". Biology Letters. 4 (4): 366–369. PMC 2610160Freely accessible. PMID 18522922. doi:10.1098/rsbl.2008.0224. 
  58. ^ Burki, F.; Inagaki, Y.; Brate, J.; Archibald, J. M.; Keeling, P. J.; Cavalier-Smith, T.; Sakaguchi, M.; Hashimoto, T.; Horak, A. (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution. 1: 231–8. PMC 2817417Freely accessible. PMID 20333193. doi:10.1093/gbe/evp022. 
  59. ^ Hackett, J.D.; Yoon, H.S.; Li, S.; Reyes-Prieto, A.; Rummele, S.E.; Bhattacharya, D. (2007). "Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates". Mol. Biol. Evol. 24 (8): 1702–13. PMID 17488740. doi:10.1093/molbev/msm089. 
  60. ^ Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–5. PMC 2880060Freely accessible. PMID 20031978. doi:10.1098/rsbl.2009.0948. 
  61. ^ a b c Jagus, R; Bachvaroff, TR; Joshi, B; Place, AR (2012). "Diversity of eukaryotic translational initiation factor eIF4E in protists". Comp Funct Genomics. 2012: 134839. doi:10.1155/2012/134839. 
  62. ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (27 January 2016). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc. R. Soc. B. 283 (1823): 20152802. PMC 4795036Freely accessible. PMID 26817772. doi:10.1098/rspb.2015.2802. 
  63. ^ Janouškovec, Jan; Tikhonenkov, Denis V.; Burki, Fabien; Howe, Alexis T.; Rohwer, Forest L.; Mylnikov, Alexander P.; Keeling, Patrick J. (2017). "A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction". Current Biology. 27 (23): 3717–3724.e5. doi:10.1016/j.cub.2017.10.051. 
  64. ^ Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C.; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D. (2016). "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26 (10): 1274–1284. doi:10.1016/j.cub.2016.03.053. 
  65. ^ a b Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne, ed. "EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata". PLoS ONE. 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. PMC 2440802Freely accessible. PMID 18612431. doi:10.1371/journal.pone.0002621. 
  66. ^ Baurain, Denis; Brinkmann, Henner; Petersen, Jörn; Rodríguez-Ezpeleta, Naiara; Stechmann, Alexandra; Demoulin, Vincent; Roger, Andrew J.; Burger, Gertraud; Lang, B. Franz & Philippe, Hervé (July 2010). "Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles". Molecular Biology and Evolution. 27 (7): 1698–1709. PMID 20194427. doi:10.1093/molbev/msq059. 
  67. ^ Burki, F.; Okamoto, N.; Pombert, J.F. & Keeling, P.J. (7 June 2012). "The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins". Proc. Biol. Sci. 279: 2246–54. PMC 3321700Freely accessible. PMID 22298847. doi:10.1098/rspb.2011.2301. 
  68. ^ Cavalier-Smith, T (2006). "Protist phylogeny and the high-level classification of Protozoa". European Journal of Protistology. 39 (4): 338–348. doi:10.1078/0932-4739-00002. 
  69. ^ Burki F, Pawlowski J (October 2006). "Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts". Mol. Biol. Evol. 23 (10): 1922–30. PMID 16829542. doi:10.1093/molbev/msl055. 
  70. ^ Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David; Ma, Hong; Zhou, Xiaofan (2016-09-01). "Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes". Genome Biology and Evolution. 8 (9): 2683–2701. PMC 5631032Freely accessible. PMID 27604879. doi:10.1093/gbe/evw196. 
  71. ^ Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255: 1–61. doi:10.1007/s00709-017-1147-3. 
  72. ^ Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek (2015-02-17). "Bacterial proteins pinpoint a single eukaryotic root". Proceedings of the National Academy of Sciences. 112 (7): E693–E699. PMC 4343179Freely accessible. PMID 25646484. doi:10.1073/pnas.1420657112. 
  73. ^ Yang, Jiwon; Harding, Tommy; Kamikawa, Ryoma; Simpson, Alastair G. B.; Roger, Andrew J. (1 May 2017). "Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids". Genome Biology and Evolution. 9 (5): 1161–1174. doi:10.1093/gbe/evx086. 
  74. ^ Cavalier-Smith, Thomas; Fiore-Donno, Anna Maria; Chao, Ema; Kudryavtsev, Alexander; Berney, Cédric; Snell, Elizabeth A.; Lewis, Rhodri (2015). "Multigene phylogeny resolves deep branching of Amoebozoa". Molecular Phylogenetics and Evolution. 83: 293–304. doi:10.1016/j.ympev.2014.08.011. 
  75. ^ Brown, Matthew W.; Heiss, Aaron; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K.; Shiratori, Takashi; Ishida, Ken; Hashimoto, Tetsuo (2017-12-03). "Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group". bioRxiv: 227884. doi:10.1101/227884. 
  76. ^ Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. (2015). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053. 
  77. ^ a b López-García, Purificación; Eme, Laura; Moreira, David (2017). "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. 434: 20–33. doi:10.1016/j.jtbi.2017.02.031. 
  78. ^ Ponce-Toledo, Rafael I.; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Benzerara, Karim; Moreira, David (2017). "An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids". Current Biology. 27 (3): 386–391. PMC 5650054Freely accessible. PMID 28132810. doi:10.1016/j.cub.2016.11.056. 
  79. ^ de Vries, Jan; Archibald, John M. (2017). "Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?". Current Biology. 27 (3): R103–R105. doi:10.1016/j.cub.2016.12.006. 
  80. ^ a b Cavalier-Smith, T (2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. PMC 2880060Freely accessible. PMID 20031978. doi:10.1098/rsbl.2009.0948. 
  81. ^ a b Cavalier-Smith, T (2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European journal of protistology. 49 (2): 115–178. PMID 23085100. doi:10.1016/j.ejop.2012.06.001. 
  82. ^ a b Cavalier-Smith, T.; Chao, E. E.; Snell, E. A.; Berney, C.; Fiore-Donno, A. M.; Lewis, R. (2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics & Evolution. 81: 71–85. PMID 25152275. doi:10.1016/j.ympev.2014.08.012. 
  83. ^ a b Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255: 1–61. doi:10.1007/s00709-017-1147-3. 
  84. ^ Cox, C. J.; Foster, P. G.; Hirt, R. P.; Harris, S. R.; Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proc Natl Acad Sci USA. 105 (51): 20356–61. Bibcode:2008PNAS..10520356C. PMC 2629343Freely accessible. PMID 19073919. doi:10.1073/pnas.0810647105. 
  85. ^ Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006). "Toward automatic reconstruction of a highly resolved tree of life". Science. 311 (5765): 1283–7. Bibcode:2006Sci...311.1283C. PMID 16513982. doi:10.1126/science.1123061. 
  86. ^ Knoll, Andrew H.; Javaux, E.J; Hewitt, D.; Cohen, P. (29 June 2006). "Eukaryotic organisms in Proterozoic oceans". Philosophical Transactions of the Royal Society B. 361 (1470): 1023–38. PMC 1578724Freely accessible. PMID 16754612. doi:10.1098/rstb.2006.1843. 
  87. ^ Retallack, G.J.; Krull, E.S.; Thackray, G.D. & Parkinson, D. H. (2013). "Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa.". Precambrian Research. 235: 71–87. doi:10.1016/j.precamres.2013.05.015. 
  88. ^ Albani, A. E.; Bengtson, S.; Canfield, D. E.; Bekker, A.; MacChiarelli, R.; Mazurier, A.; Hammarlund, E. U.; Boulvais, P.; Dupuy, J. J.; Fontaine, C.; Fürsich, F. T.; Gauthier-Lafaye, F. O.; Janvier, P.; Javaux, E.; Ossa, F. O.; Pierson-Wickmann, A. C.; Riboulleau, A.; Sardini, P.; Vachard, D.; Whitehouse, M.; Meunier, A. (2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature. 466 (7302): 100–104. Bibcode:2010Natur.466..100A. PMID 20596019. doi:10.1038/nature09166. 
  89. ^ Bengtson, S; Belivanova, V; Rasmussen, B; Whitehouse, M (2009). "The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older". Proceedings of the National Academy of Sciences of the United States of America. 106 (19): 7729–34. Bibcode:2009PNAS..106.7729B. PMC 2683128Freely accessible. PMID 19416859. doi:10.1073/pnas.0812460106. 
  90. ^ Brocks JJ, Logan GA, Buick R, Summons RE (August 1999). "Archean molecular fossils and the early rise of eukaryotes". Science. 285 (5430): 1033–6. PMID 10446042. doi:10.1126/science.285.5430.1033. 
  91. ^ Ward P (9 Feb 2008). "Mass extinctions: the microbes strike back". New Scientist: 40–3. 
  92. ^ Martin W (December 2005). "Archaebacteria (Archaea) and the origin of the eukaryotic nucleus". Curr. Opin. Microbiol. 8 (6): 630–7. PMID 16242992. doi:10.1016/j.mib.2005.10.004. 
  93. ^ Takemura M (May 2001). "Poxviruses and the origin of the eukaryotic nucleus". J. Mol. Evol. 52 (5): 419–25. PMID 11443345. doi:10.1007/s002390010171. 
  94. ^ Bell PJ (September 2001). "Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?". J. Mol. Evol. 53 (3): 251–6. PMID 11523012. doi:10.1007/s002390010215. 
  95. ^ Wächtershäuser G (January 2003). "From pre-cells to Eukarya—a tale of two lipids". Mol. Microbiol. 47 (1): 13–22. PMID 12492850. doi:10.1046/j.1365-2958.2003.03267.x. 
  96. ^ Wächtershäuser G (October 2006). "From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya". Philosophical Transactions of the Royal Society B. 361 (1474): 1787–1808. PMC 1664677Freely accessible. PMID 17008219. doi:10.1098/rstb.2006.1904. 
  97. ^ Lane, Nick (2016). The Vital Question: Why is Life the Way it is? (paperback ed.). Profile Books. pp. 157–191. ISBN 978-1-781-25037-2. 
  98. ^ Egel, Richard (March 2012). "Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life". Life. 2 (1): 170–212. PMC 4187143Freely accessible. PMID 25382122. doi:10.3390/life2010170. 
  99. ^ Hartman H.; Fedorov A. (5 February 2002). "The origin of the eukaryotic cell: A genomic investigation". PNAS. 99 (3): 1420–1425. Bibcode:2002PNAS...99.1420H. PMC 122206Freely accessible. PMID 11805300. doi:10.1073/pnas.032658599. 
  100. ^ a b Harish, Ajith; Tunlid, Anders & Kurland, Charles G. (2013), "Rooted phylogeny of the three superkingdoms", Biochimie 95 (8): 1593–1604, doi:10.1016/j.biochi.2013.04.016 
  101. ^ a b Harish, Ajith; Kurland, Charles G. (2017). "Akaryotes and Eukaryotes are independent descendants of a universal common ancestor". Biochimie. 138: 168–183. doi:10.1016/j.biochi.2017.04.013. 
  102. ^ Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki (2016-04-11). "A new view of the tree of life". Nature Microbiology. 1 (5): 16048. PMID 27572647. doi:10.1038/nmicrobiol.2016.48. 
  103. ^ Spang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J. G. (2015). "Complex archaea that bridge the gap between prokaryotes and eukaryotes". Nature. 521 (7551): 173–179. PMC 4444528Freely accessible. PMID 25945739. doi:10.1038/nature14447. 
  104. ^ Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W.; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U.; Stott, Matthew B.; Nunoura, Takuro; Banfield, Jillian F.; Schramm, Andreas; Baker, Brett J.; Spang, Anja; Ettema, Thijs J. G. (2017). "Asgard archaea illuminate the origin of eukaryotic cellular complexity". Nature. 541 (7637): 353–358. Bibcode:2017Natur.541..353Z. doi:10.1038/nature21031. 
  105. ^ Cunha, Violette Da; Gaia, Morgan; Gadelle, Daniele; Nasir, Arshan; Forterre, Patrick (12 June 2017). "Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes". PLOS Genetics. 13 (6): e1006810. doi:10.1371/journal.pgen.1006810. 
  106. ^ Harish, Ajith & Kurland, Charles G. (2017), "Empirical genome evolution models root the tree of life", Biochimie 138: 137–155, doi:10.1016/j.biochi.2017.04.014 
  107. ^ Jékely G (2007). "Origin of eukaryotic endomembranes: a critical evaluation of different model scenarios". Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. 607: 38–51. ISBN 978-0-387-74020-1. PMID 17977457. doi:10.1007/978-0-387-74021-8_3. 
  108. ^ Cavalier-Smith T (1 March 2002). "The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa". Int. J. Syst. Evol. Microbiol. 52 (Pt 2): 297–354. PMID 11931142. doi:10.1099/00207713-52-2-297. 
  109. ^ Martin W, Müller M (March 1998). "The hydrogen hypothesis for the first eukaryote". Nature. 392 (6671): 37–41. Bibcode:1998Natur.392...37M. PMID 9510246. doi:10.1038/32096. 
  110. ^ Pisani D, Cotton JA, McInerney JO (2007). "Supertrees disentangle the chimerical origin of eukaryotic genomes". Mol Biol Evol. 24 (8): 1752–60. PMID 17504772. doi:10.1093/molbev/msm095. 
  111. ^ Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011). "21". The role of symbiosis in eukaryotic evolution. Origins and evolution of life – An astrobiological perspective. pp. 326–339. 
  112. ^ Ayala, J. (1 April 1994). "Transport and internal organization of membranes: vesicles, membrane networks and GTP-binding proteins". Journal of Cell Science. 107 (107): 753–763. PMID 8056835. 
  113. ^ Martin, William F. "The Origin of Mitochondria". Scitable. Nature education. Retrieved 2013-03-27. 
  114. ^ Margulis, L. (1970). Origin of Eukaryotic Cells. New Haven, London: Yale University Press. 
  115. ^ Margulis, L. (1993). Symbiosis in Cell Evolution. New York: W. H. Freeman. 
  116. ^ Margulis, L.; Dolan, M.F.; Guerrero, R. (20 June 2000). "The chimeric eukaryote:origin of the nucleus from the Karyomastigont in Amitochondriate protists". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 6954–6959. Bibcode:2000PNAS...97.6954M. PMC 34369Freely accessible. PMID 10860956. doi:10.1073/pnas.97.13.6954. 
  117. ^ Martin, W.; Müller, M. (1998). "The hydrogen hypothesis for the first eukaryote". Nature. 392 (6671): 37–41. Bibcode:1998Natur.392...37M. PMID 9510246. doi:10.1038/32096. 
  118. ^ Moreira, D.; Lopez-Garcia, P. (November 1998). "Symbiosis between methanogenic Archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis". Journal of Molecular Evolution. 47 (5): 517–530. PMID 9797402. doi:10.1007/PL00006408. 
  119. ^ Lopez-Garcia, P.; Moreira, D. (2006). "Selective forces for the origin of the eukaryotic nucleus". BioEssays. 28 (5): 525–533. PMID 16615090. doi:10.1002/bies.20413. 
  120. ^ Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011). "The role of symbiosis in eukaryotic evolution". In Gargaud, Muriel; López-Garcìa, Purificación; Martin, Hervé. Origins and Evolution of Life: An Astrobiological Perspective. Cambridge: Cambridge University Press. pp. 326–339. ISBN 978-0-521-76131-4. 

Template:NCBI-scienceprimerThis link is dead.

External links


Template:Cryptophyta and haptophyta Template:Heterokont Template:Alveolata Template:Amoebozoa Template:Opisthokont protists

Template:Fungi classification Template:Organisms et al.Template:Use American English

Entries for Eukaryote in library catalogs and other authority files:
Community content is available under CC-BY-SA unless otherwise noted.