FANDOM


(Created page with "{{Expand list|date=October 2012}} This list provides a list of mathematical symbols. Table is based on{{Visual Encyclopedia/Science}}. {| border=1 width="100%" align="center...")
 
m
Line 1: Line 1:
 
{{Expand list|date=October 2012}}
 
{{Expand list|date=October 2012}}
   
This list provides a list of mathematical symbols. Table is based on{{Visual Encyclopedia/Science}}.
+
This list provides a list of mathematical symbols. Table is based on the one on [[http://simple.wikipedia.org/wiki/List_of_mathematical_symbols List of mathematical symbols]].
   
{| border=1 width="100%" align="center" class="sortable" style="background: #FFFFFF; border:1px solid #000; border-collapse:collapse;"
+
{| class="wikitable"
|- style="background:#fff"
 
!Symbol !! Meaning !! Example !! Symbol !! Meaning !! Example !! Symbol !! Meaning !! Example
 
 
|-
 
|-
| + || Add (plus) || 2 '''''+''''' 2 = 4 || = || Equal to || 2 + 2 '''''=''''' 4 ||
+
! Symbol
  +
! Name
  +
! Read as
  +
! Meaning
  +
! Example
 
|-
 
|-
| - || Subtract (minus) || 2 '''''-''''' 2 = 0 || ≠ || Not equal to || 2 + 2 '''''≠''''' 5
+
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">=</div>
  +
| [[Equality (mathematics)|equality]]
  +
| equals, is equal to
  +
| If x=y, x and y represent the same value or thing.
  +
| 2+2=4
 
|-
 
|-
|| x || Multiply (times) || 2 x 2 = 4 ||
+
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">≡</div>
  +
| definition
  +
| is defined as
  +
| If x≡y, x is defined as another name of y
  +
| (a+b)<sup>2</sup>≡a<sup>2</sup>+2ab+b<sup>2</sup>
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">≈</div>
  +
| approximately equal
  +
| is approximately equal to
  +
| If x≈y, x and y are almost equal.
  +
| √2≈1.41
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">≠</div>
  +
| inequation
  +
| does not equal, is not equal to
  +
| If x≠y, x and y do not represent the same value or thing.
  +
| 1+1≠3
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;"><</div>
  +
| rowspan=4|<div style="font-size:100%;">strict [[inequality]]</div>
  +
| is less than
  +
| If x<y, x is less than y.
  +
| 4<5
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">></div>
  +
| is greater than
  +
| If x>y, x is greater than y.
  +
| 3>2
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">≪</div>
  +
| is much less than
  +
| If x≪y, x is much less than y.
  +
| 1≪999999999
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">≫</div>
  +
| is much greater than
  +
| If x≫y, x is much greater than y.
  +
| 88979808≫0.001
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">≤</div>
  +
| rowspan=2|<div style="font-size:100%;">inequality</div>
  +
| is less than or equal to
  +
| If x≤y, x is less than or equal to y.
  +
| 5≤6 and 5≤5
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">≥</div>
  +
| is greater than or equal to
  +
| If x≥y, x is greater than or equal to y.
  +
| 2≥1 and 2≥2
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">∝</div>
  +
| [[proportionality]]
  +
| is proportional to
  +
| If x∝y, then y=kx for some [[constant]] k.
  +
| If y=4x then y∝x and x∝y
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">+</div>
  +
| [[addition]]
  +
| plus
  +
| x+y is the sum of x and y.
  +
| 2+3=5
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">-</div>
  +
| [subtraction]
  +
| minus
  +
| x-y is the subtraction of y from x
  +
| 5-3=2
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">×</div>
  +
| rowspan=2|[[multiplication]]
  +
| rowspan=2|times
  +
| x×y is the multiplication of x by y
  +
| 4×5=20
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">·</div>
  +
| x·y is the multiplication of x by y
  +
| 4·5=20
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">÷</div>
  +
| rowspan=2|[[division]]
  +
| rowspan=2|divided by
  +
| rowspan=2|x÷y or x/y is the division of x by y
  +
| 20÷4=5 and 20/4=5
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">/</div>
  +
| 20/4=5
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">±</div>
  +
| plus-minus
  +
| plus or minus
  +
| x±y means both x+y and x-y
  +
| The equation 3±√9 has two solutions, 0 and 6.
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">∓</div>
  +
| minus-plus
  +
| minus or plus
  +
| 4±(3∓5) means both 4+(3-5) and 4-(3+5)
  +
| 6∓(1±3)=2 or 4
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">√</div>
  +
| [[square root]]
  +
| square root
  +
| √x is a number whose square is x.
  +
| √4=2 or -2
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">∑</div>
  +
| summation
  +
| sum over … from … to … of, sigma
  +
| <math>\sum_{k=1}^{n}{x_k}</math> is the same as x<sub>1</sub>+x<sub>2</sub>+x<sub>3</sub>+x<sub>k</sub>
  +
| <math>\sum_{k=1}^{5}{k+2}=3+4+5+6+7=25</math>
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">∏</div>
  +
| multiplication
  +
| product over … from … to … of
  +
| <math>\prod_{k=1}^{n}{x_k}</math> is the same as x<sub>1</sub>×x<sub>2</sub>×x<sub>3</sub>×x<sub>k</sub>
  +
| <math>\prod_{k=1}^{5}{k}</math>=1×2×3×4×5=120
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">!</div>
  +
| [[factorial]]
  +
| factorial
  +
| n! is the product 1×2×3...×n
  +
| 5!=1×2×3×4×5=120
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">⇒</div>
  +
| material implication
  +
| implies
  +
| A⇒B means that if A is true, B must also be true, but if A is false, B is unknown.
  +
| x=3⇒x<sup>2</sup>=9, but x<sup>2</sup>=9⇒x=3 is false, because x could also be -3.
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">⇔</div>
  +
| material equivalence
  +
| if and only if
  +
| If A is true, B is true and if A is false, B is false.
  +
| x=y+1⇔x-1=y
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">|…|</div>
  +
| absolute value
  +
| absolute value of
  +
| <nowiki>|x|</nowiki> is the distance along the real line (or across the complex plane) between x and zero
  +
| <nowiki>|5|=5 and |-5|=5</nowiki>
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;"><nowiki>||</nowiki></div>
  +
| [[parallel (geometry)|parallel]]
  +
| is parallel to
  +
| If A<nowiki>||</nowiki>B then A and B are parallel
  +
|
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">⊥</div>
  +
| perpendicular
  +
| is perpendicular to
  +
| If A⊥B then A is perpendicular to B
  +
|
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">≅</div>
  +
| [[congruence]]
  +
| is congruent to
  +
| If A≅B then shape A is congruent to shape B (has the same [[Unit of measurement|measurements]])
  +
|
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">φ</div>
  +
| [[golden ratio]]
  +
| golden ratio
  +
| The golden ratio is an [[irrational number]] equal to (1+√5)÷2 or approximately 1.6180339887.
  +
|
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">∞</div>
  +
| [[infinity]]
  +
| infinity
  +
| ∞ is a number greater than every real number.
  +
|
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">∈</div>
  +
| rowspan=2|[[set theory|set membership]]
  +
| is an element of
  +
| a∈S means that a is an element of the set S
  +
| 3.5∈ℝ, 1∈ℕ, 1+''i''∈ℂ
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">∉</div>
  +
| is not an element of
  +
| a∉S means that a is not an element of the set S
  +
| 2.1∉ℕ, 1+''i''∉ℝ
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">{,}</div>
  +
| Set brackets
  +
| the set of
  +
| {a,b,c} is the set consisting of a, b, and c
  +
| ℕ={1,2,3,4,5}
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">ℕ</div>
  +
| [[Natural numbers]]
  +
| N
  +
| ℕ denotes the set of natural numbers(1,2,3,4,5...)
  +
|
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">ℤ</div>
  +
| [[Integers]]
  +
| Z
  +
| ℤ denotes the set of integers (-3,-2,-1,0,1,2,3...)
  +
|
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">ℚ</div>
  +
| [[Rational numbers]]
  +
| Q
  +
| ℚ denotes the set of rational numbers (numbers that can be written as a fraction a/b where a∈ℤ, b∈ℕ)
  +
| 8.323∈ℚ, 7∈ℚ, π∉ℚ
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">ℝ</div>
  +
| [[Real numbers]]
  +
| R
  +
| ℝ denotes the set of real numbers
  +
| π∈ℝ, 7∈ℝ, √(-1)∉ℝ
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">ℂ</div>
  +
| [[Complex numbers]]
  +
| C
  +
| ℂ denotes the set of complex numbers
  +
| √(-1)∈ℂ
  +
|-
  +
| bgcolor=#D6F1FF align=center|<div style="font-size:200%;">x̄</div>
  +
| [[Mean (statistics)|Mean]]
  +
| bar, overbar
  +
| x̄ is the mean (average) of x<sub>i</sub>
  +
| if x={1,2,3} then x̄=2
  +
|-
  +
| bgcolor=#ffff99 align=center|<div style="font-size:200%;">x̄</div>
  +
| complex conjugate
  +
| the complex conjugate of x
  +
| If x=a + bi, then x̄=a - bi where i=√(-1)
  +
| x=-4 + 5.3i, x̄=-4 - 5.3i
 
|}
 
|}
  +
  +
[[category:lists|Mathematic symbols]]
  +
[[category:Mathematics]]
  +
   
 
==References==
 
==References==

Revision as of 02:43, October 20, 2012

This list provides a list of mathematical symbols. Table is based on the one on [List of mathematical symbols].

Symbol Name Read as Meaning Example
=
equality equals, is equal to If x=y, x and y represent the same value or thing. 2+2=4
definition is defined as If x≡y, x is defined as another name of y (a+b)2≡a2+2ab+b2
approximately equal is approximately equal to If x≈y, x and y are almost equal. √2≈1.41
inequation does not equal, is not equal to If x≠y, x and y do not represent the same value or thing. 1+1≠3
<
strict inequality
is less than If x<y, x is less than y. 4<5
>
is greater than If x>y, x is greater than y. 3>2
is much less than If x≪y, x is much less than y. 1≪999999999
is much greater than If x≫y, x is much greater than y. 88979808≫0.001
inequality
is less than or equal to If x≤y, x is less than or equal to y. 5≤6 and 5≤5
is greater than or equal to If x≥y, x is greater than or equal to y. 2≥1 and 2≥2
proportionality is proportional to If x∝y, then y=kx for some constant k. If y=4x then y∝x and x∝y
+
addition plus x+y is the sum of x and y. 2+3=5
-
[subtraction] minus x-y is the subtraction of y from x 5-3=2
×
multiplication times x×y is the multiplication of x by y 4×5=20
·
x·y is the multiplication of x by y 4·5=20
÷
division divided by x÷y or x/y is the division of x by y 20÷4=5 and 20/4=5
/
20/4=5
±
plus-minus plus or minus x±y means both x+y and x-y The equation 3±√9 has two solutions, 0 and 6.
minus-plus minus or plus 4±(3∓5) means both 4+(3-5) and 4-(3+5) 6∓(1±3)=2 or 4
square root square root √x is a number whose square is x. √4=2 or -2
summation sum over … from … to … of, sigma $ \sum_{k=1}^{n}{x_k} $ is the same as x1+x2+x3+xk $ \sum_{k=1}^{5}{k+2}=3+4+5+6+7=25 $
multiplication product over … from … to … of $ \prod_{k=1}^{n}{x_k} $ is the same as x1×x2×x3×xk $ \prod_{k=1}^{5}{k} $=1×2×3×4×5=120
!
factorial factorial n! is the product 1×2×3...×n 5!=1×2×3×4×5=120
material implication implies A⇒B means that if A is true, B must also be true, but if A is false, B is unknown. x=3⇒x2=9, but x2=9⇒x=3 is false, because x could also be -3.
material equivalence if and only if If A is true, B is true and if A is false, B is false. x=y+1⇔x-1=y
|…|
absolute value absolute value of |x| is the distance along the real line (or across the complex plane) between x and zero |5|=5 and |-5|=5
||
parallel is parallel to If A||B then A and B are parallel
perpendicular is perpendicular to If A⊥B then A is perpendicular to B
congruence is congruent to If A≅B then shape A is congruent to shape B (has the same measurements)
φ
golden ratio golden ratio The golden ratio is an irrational number equal to (1+√5)÷2 or approximately 1.6180339887.
infinity infinity ∞ is a number greater than every real number.
set membership is an element of a∈S means that a is an element of the set S 3.5∈ℝ, 1∈ℕ, 1+i∈ℂ
is not an element of a∉S means that a is not an element of the set S 2.1∉ℕ, 1+i∉ℝ
{,}
Set brackets the set of {a,b,c} is the set consisting of a, b, and c ℕ={1,2,3,4,5}
Natural numbers N ℕ denotes the set of natural numbers(1,2,3,4,5...)
Integers Z ℤ denotes the set of integers (-3,-2,-1,0,1,2,3...)
Rational numbers Q ℚ denotes the set of rational numbers (numbers that can be written as a fraction a/b where a∈ℤ, b∈ℕ) 8.323∈ℚ, 7∈ℚ, π∉ℚ
Real numbers R ℝ denotes the set of real numbers π∈ℝ, 7∈ℝ, √(-1)∉ℝ
Complex numbers C ℂ denotes the set of complex numbers √(-1)∈ℂ
Mean bar, overbar x̄ is the mean (average) of xi if x={1,2,3} then x̄=2
complex conjugate the complex conjugate of x If x=a + bi, then x̄=a - bi where i=√(-1) x=-4 + 5.3i, x̄=-4 - 5.3i


References

Happy Pi Day (to the 36th digit)! This article is part of Project Maths, a All Birds project that aims to write comprehensive articles on each term related to mathematics.
Community content is available under CC-BY-SA unless otherwise noted.